
UNIT 4 – DISCRETE MATHEMATICS AND ITS APPLICATIONS 
UNIT 4 – DISCRETE MATHEMATICS AND ITS APPLICATIONS ..............................................................................................1 
COUNTING TECHNIQUES..................................................................................................................................................................3 

INTRODUCTION – DON’T WE ALREADY KNOW HOW TO COUNT?.............................................................................................................3 
Introductory Problem.......................................................................................................................................................................3 
Analysis of Problem..........................................................................................................................................................................3 

BASIC SET THEORY AND THE ADDITIVE COUNTING PRINCIPLE .............................................................................................................3 
Sets ...................................................................................................................................................................................................3 
Rules for Determining Set Membership............................................................................................................................................3 
Can Rules always be expressed as Formulas?.................................................................................................................................3 
The Cardinality of Sets .....................................................................................................................................................................4 
Discrete Mathematics and Combinatorics .......................................................................................................................................4 
Examples ..........................................................................................................................................................................................4 
Finite Sets.........................................................................................................................................................................................4 
Countable .........................................................................................................................................................................................4 
Uncountable .....................................................................................................................................................................................4 
Summary...........................................................................................................................................................................................4 
Operations on Sets............................................................................................................................................................................4 
The Null (Empty) Set ........................................................................................................................................................................4 
Union of two Sets..............................................................................................................................................................................5 
Intersection of two Sets.....................................................................................................................................................................5 
Complement of a Set.........................................................................................................................................................................5 
Subset of a Set ..................................................................................................................................................................................5 
Summary...........................................................................................................................................................................................5 
Examples ..........................................................................................................................................................................................6 
The Additive Counting Principle ......................................................................................................................................................7 
Summary...........................................................................................................................................................................................7 

THE MULTIPLICATIVE COUNTING PRINCIPLE.........................................................................................................................................7 
Example............................................................................................................................................................................................7 
The Factorial Function ....................................................................................................................................................................7 

PRODUCT RULES (MULTIPLICATIVE PRINCIPLES) ..................................................................................................................................8 
Example 1.........................................................................................................................................................................................8 
Solution ............................................................................................................................................................................................8 
Example 2.........................................................................................................................................................................................8 
Solution ............................................................................................................................................................................................8 

HOMEWORK FOR SETS, ADDITIVE COUNTING PRINCIPLE, MULTIPLICATIVE COUNTING PRINCIPLE ......................................................9 
SEQUENCES AND SUBSETS .....................................................................................................................................................................9 
COUNTING SEQUENCES WITH DISTINCT TERMS (GROUPINGS WITH DISTINCT OBJECTS WHEN ORDER MATTERS) ................................9 

Example............................................................................................................................................................................................9 
Solution ............................................................................................................................................................................................9 
Permutations ....................................................................................................................................................................................9 

COUNTING SEQUENCES WITH UNLIMITED REPEATING TERMS (GROUPINGS WITH UNLIMITED REPEATING OBJECTS WHEN ORDER 
MATTERS)............................................................................................................................................................................................10 

Example 1.......................................................................................................................................................................................10 
Solution ..........................................................................................................................................................................................10 
Sequences with Unlimited Repeated Terms....................................................................................................................................10 
Example 2.......................................................................................................................................................................................10 
Solution ..........................................................................................................................................................................................10 

HOMEWORK FOR COUNTING SEQUENCES ............................................................................................................................................10 
COUNTING SUBSETS (GROUPINGS WHEN ORDER DOESN’T MATTER)...................................................................................................11 

Back to the Lotto 6/49 Problem......................................................................................................................................................11 
Combinations (Number of Subsets) ................................................................................................................................................11 
Example 1.......................................................................................................................................................................................11 
Solution ..........................................................................................................................................................................................11 
Investigation ...................................................................................................................................................................................12 
Example 2.......................................................................................................................................................................................12 
Solution ..........................................................................................................................................................................................12 

HOMEWORK.........................................................................................................................................................................................12 

Copyright ©, Nick E. Nolfi MGA4U0 Discrete Mathematics and its Applications DMA-1 



INVESTIGATION: PASCAL’S TRIANGLE .................................................................................................................................................13 
Activity............................................................................................................................................................................................13 
Conclusions ....................................................................................................................................................................................14 

THE BINOMIAL THEOREM .............................................................................................................................................................15 
THE CONNECTION AMONG PASCAL’S TRIANGLE, COMBINATIONS AND THE BINOMIAL THEOREM ......................................................15 

Pascal’s Identity .............................................................................................................................................................................15 
Theorem: Pascal’s Identity ............................................................................................................................................................16 
Corollary of Pascal’s Identity ........................................................................................................................................................16 
A Simple Consequence of Pascal’s Triangle ..................................................................................................................................16 
The Binomial Theorem ...................................................................................................................................................................17 
Examples ........................................................................................................................................................................................17 

HOMEWORK.........................................................................................................................................................................................17 
PROOF BY MATHEMATICAL INDUCTION..................................................................................................................................18 

INTRODUCTION ....................................................................................................................................................................................18 
ANALOGY: THE DOMINO EFFECT ........................................................................................................................................................18 
EXAMPLE .............................................................................................................................................................................................18 

Analysis ..........................................................................................................................................................................................18 
Proof...............................................................................................................................................................................................19 

PROOF OF THE BINOMIAL THEOREM ....................................................................................................................................................20 

Copyright ©, Nick E. Nolfi MGA4U0 Discrete Mathematics and its Applications DMA-2 



COUNTING TECHNIQUES 
Introduction – Don’t we already know how to count? 
Didn’t Count von Count on Sesame Street teach us everything we need to know about counting?  As 
much as we appreciate the count’s efforts, he only taught us enumeration, the most elementary 
counting principle.  This method involves listing objects one by one until the number of items is 
determined.  While this method works extremely well for a small number of items, it is wholly 
inadequate when dealing with larger sets.  Luckily, mathematicians have developed many clever 
methods that allow us to count in a much more intelligent and efficient manner. 

Introductory Problem 
The Lotto 6/49® lottery involves selecting six numbers from the set of integers ranging from 1 to 49 inclusive.  To win the 
Lotto 6/49® jackpot, a contestant must match all six of the drawn numbers.  What is the probability of doing so? 
Analysis of Problem 
Although we are not yet in a position to solve the Lotto 6/49® jackpot problem, at this juncture we can discuss why Count 
von Count’s method will not work!  To solve this problem, we need to count the number of ways we can select six 
(different) integers from the set of integers ranging from 1 to 49 inclusive.  Once we learn about combinations, we shall 
discover that there are 13983816 different ways of choosing a set of six integers from 49.  Assuming that you could 
generate each set at a rate of one per second and never need to take any breaks, it would take almost 162 days to list all the 
possibilities! 

Basic Set Theory and the Additive Counting Principle 
Sets 
A set is any collection of objects.  The members of a set are called its elements.  Each element of a set must be unique, 
that is, a set may contain only one “copy” of any given element.  The symbol “∈” is used to denote membership of a set.  
For example, “ 2 A∈ ,” read “2 is an element of A,” means that the number 2 belongs to the set A. 

Rules for Determining Set Membership 
We use rules to determine whether an element belongs to a set.  Very often, these rules can be expressed in terms of 
formulas.  For example, the set { }2  and|E x x k k= ∈ = ∈] ]

∈

 is the set of all even integers.  The formula 
“ ” determines that the elements of E must be even.  Furthermore, since this formula can be used to 
generate any even integer, E must be the set of all even integers. 

2  and x k k= ]

 

This is read “the set of all integers x such that x is the product of any integer and two.” 

{ }2  and| x kE kx∈] = ∈= ]  

Can Rules always be expressed as Formulas? 
Mathematical formulas serve as a way of summarizing mathematical relationships in a neat, succinct equation.  
Sometimes, however, we either do not know how to express a particular rule in terms of a formula or it is not even 
possible to do so!  For instance, consider the set { }is prime|P p p= ∈] , which is the set of all prime numbers.  
Unfortunately, nobody has been able to find a formula that generates all the prime numbers.  There are algorithms that in 
theory can generate all the primes but they are excruciatingly slow.  Using such algorithms, even the fastest 
supercomputers would take millions of years to generate all the prime numbers less than N, where N is a sufficiently large 
natural number. 

For instance, consider the problem of finding all 512-bit prime numbers, that is, all prime numbers that can be represented 
using 512 or fewer binary digits.  There are approximately 10151 such primes.  By contrast, there are only 1077 atoms in the 
universe.  If each atom in the universe could generate one billion new primes each microsecond, then from the beginning 
of time until now, only 10109 primes could be generated!  To complicate matters, if one could find a way of building a 
device that could store 1 GB of data per gram of its mass, the device would become so massive that it would collapse 
upon itself into a black hole!  For this reason, prime numbers are of great importance in the field of cryptography (data 
encryption). 
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The Cardinality of Sets 
The cardinality of a set is a measure of its size.  The cardinality of a finite set is simply equal to the number of elements in 
the set.  The cardinality of an infinite set depends on whether the set is countable or uncountable.  An infinite set A is 
countable if there exists a one-one correspondence between the elements of A and the set of natural numbers (i.e. ).  
The infinite set A is uncountable if there does not exist a one-one correspondence between the elements of A and those of 

.  In simple terms, we can think of countable sets as those whose elements can be “numbered” using the natural 
numbers. 

`

`

If A is a set, then the cardinality of A is denoted n(A).  There are three possibilities for the value of n(A). 

1. If A is finite, then n(A) = k, where k ∈ . `
2. If A is countable, then n(A) is said to be “aleph-null” or “aleph-naught.”  (This is the cardinality of .) `
3. If A is uncountable, then n(A) is said to be “aleph-one.”  (This is the cardinality of .) \
 
Discrete Mathematics and Combinatorics 
“Discrete mathematics” is the branch of mathematics dealing with problems involving finite or countable sets.  Problems 
involving uncountable sets are generally in the realm of calculus, which in more advanced circles is known as analysis.  
Algebra also deals with problems involving uncountable sets but it usually deals with finite or countable properties of 
uncountable sets.  For example, the vector space The branch of discrete mathematics dealing with counting problems 
is called combinatorics. 

3\

Examples 
Finite Sets Countable Uncountable 

{ }100,A n nk k= ∈ = ∈` `  

{ }1, 2, 4,5,10, 20, 25,50,100=  
= set of all whole factors of 100 

{ }, 2, 1, 0,1, 2,= − −] … …  

{ }1, 2,3,=` …  

{ }0,1, 2,3,W = …  

{ }is prime|P p p= ∈]  

, , , 0
n

q q n m m
m

= ∈ = ∈ ∈ ≠
⎧ ⎫
⎨ ⎬

⎭⎩
_ \ ] ]  

\ =set of real numbers 

{ }, , 1a bi a b i= + ∈ ∈ = −^ \ \  

Set of Complex Numbers 

Summary 

• A set is a collection of objects. 
• The symbol “∈” is used to denote 

membership in a set. 
• A set can have only one “copy” of each 

element. 
• Sets can be finite, countably infinite or 

uncountably infinite. 
• The cardinality of a set means the 

number of elements in the set. 

Operations on Sets 
Just as we can operate on numbers using operations such as addition and multiplication, we can also operate on sets.  In 
this course, we shall discuss the operations union, intersection, complement, subset and cardinality. 
The Null (Empty) Set 
Just as a container can be empty, so can a set!  In addition, in the realm of numbers we use the number zero to indicate a 
state of nothingness.  Therefore, we require some way of representing a set that has no elements.  Such a set is called an 
empty or null set and is denoted { }  or φ . 

Finite Sets 

Sets Countable Sets 

Infinite Sets 

Uncountable Sets 
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Union of two Sets 
If A and B are sets, then , read “the union of A and B,” consists of all elements belonging to either A or B.  The 
union of two sets can be thought of as the “joining” of two sets, which results in a larger set.  Formally, the union of the 
sets A and B is defined as follows: 

A B∪

{ } or A B x x A x B= ∈ ∈∪  

  

A B∪  

A  B  

Pictorially, the union of two sets is shown as follows.  Such a diagram is called a Venn diagram. 

Intersection of two Sets 
If A and B are sets, then , read “the intersection of A and B,” consists of all 
elements belonging to both A and B.  The intersection of two sets can be thought of as a
discarding of all elements other than the ones that are common to both sets.  This 
process usually results in a set that is smaller than either A or B.  Formally, the 
intersection of the sets A and B is defined as follows: 

A B∩
 

{ } and A x B∈A B x x= ∈∩  
Pictorially, the intersection of two sets is shown as follows.  It is the “overlapping” 
region of the two sets. 

Complement of a Set 

If A is a set, then its complement, denoted A , is defined loosely as the set of all 
elements that are not elements of A.  This concept, however, makes no sense unless we 
define a set that contains all possible elements of interest.  Such a set is called a 
universal set and is usually denoted U.  Therefore, A  is defined as 

{ }A x U x= ∈ A∉  

Pictorially, the complement of A is shown as follows: 
 

Subset of a Set 
If A is a set and all its elements are also elements of another set B, then A is called a subset of B. 

Summary 
Given a universal set U and sets A and B consisting of elements found in U, 

1. { } or A B x U x A x B= ∈ ∈ ∈∪  

2. { } and A B x U x A x B= ∈ ∈ ∈∩  

3. { }A x U x A= ∈ ∉  

4. If every element of A is also an element of B, then we say that A is a subset of B.  In this case, if A B≠  (i.e. A is 
“smaller than” B) we say that A is a proper subset of B and we write .  If we know that A is a subset of B but A 
might be equal to B, then we write .  (This is similar to the use of the symbols “ ” and “ .”) 

A B⊂
A B⊆ < ≤

Notice that since there may be some elements that belong to both A and B, the 
cardinality of A B∪  is not necessarily equal to the cardinality of A plus the 
cardinality of B.  To calculate n A , we need to know how many 
elements are found in both A and B.  

( )B∪

U  

 

A

A
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Examples 

{ }, , , , , , , , , , , , , , , , , , , , , , , , ,U A B C D E F G H I J K L M N O P Q R S T U V W X Y Z=1. Let = set of all letters of the alphabet 

{ }, , , , ,A D K L M P S= = set of first letters of surnames of students in a math class 

{ }, , , , ,B D I J P R S= = set of first letters of given names of students in the same math class 

(a) , ,  ( ) 26n U = ( ) 6n A = ( ) 6n B =

{ }, , , , , , , ,A B D I J K L M P R S=∪ { }, ,A B D P S=∩(b) , , 

{ }, , , , , , , , , , , , , , , , , , ,A A B C E F G H I J N O Q R T U V W X Y Z=  

(c)  ( ) 9 ( ) ( ) 6 6 1n A B n A n B= ≠ + = + =∪ 2

(d)  
 

    

( ) 9 6 6 3 ( ) ( ) ( )n A B n A n B n A B= = + − = + −∪ ∩

B 

 

C 

D 

E F A 

P 

G 

S 

A B

L 

M

K I 

R 

J 

H N 

Q T U V O W X Z 

U

Y 

,  ,  ,  ,  W` ] _ _2. Create a Venn diagram that shows the relationship among the sets  and .  For the purposes of this 
question, use \  as the universal set. 

\

`  

W

_

]_  

\
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The Additive Counting Principle 
As we observed earlier, the cardinality of  is not equal to the cardinality of A plus the cardinality of B.  When we 
add n(A) and n(B), we are counting twice the elements that A and B have in common.  In mathematical terms, we can 
write this as follows: 

A B∪

( ) ( ) ( ) ( )n A n B n A B n A B+ = +∪ ∩  
Therefore, 

( ) ( ) ( ) ( )n A B n A n B n A B= + −∪ ∩  

Summary 
If A and B are finite subsets of the finite universal set U, then 
1.  ( ) ( ) ( ) ( )n A B n A n B n A B= + −∪ ∩

{ }A B φ= =∩2.  if and only if ( ) ( ) ( )n A B n A n B= +∪  (i.e. iff A and B have no elements in common) 
3. If the intersection of two or more sets is the empty set, we say that the sets are disjoint.  This means that the previous 

statement can be rephrased as follows: 
 

 if and only if A and B are disjoint ( ) ( ) ( )n A B n A n B= +∪
, we can immediately derive the following corollary: 4. By applying property 3 to the disjoint  sets and A A

( ) ( ) ( ) ( )n U n A A n A n A= = +∪  
( ) ( ) ( )n A n U n A= −5. By rearranging property 4, we immediately see that . 

The Multiplicative Counting Principle 
Example 

Desk 1 Desk 2 Desk 3 

Time 
(min)    
0-10 C. H. Eat S. C. Ribe I. C. Opy 
10-20 C. H. Eat I. C. Opy S. C. Ribe 
20-30 S. C. Ribe I. C. Opy C. H. Eat 
30-40 S. C. Ribe C. H. Eat I. C. Opy 
40-50 I. C. Opy C. H. Eat S. C. Ribe 
50-60 I. C. Opy S. C. Ribe C. H. Eat 

Mr. Nolfi is concerned about three students,  
C. H. Eat, S. C. Ribe and I. C. Opy, who have a 
tendency to cheat on tests.  To minimize the 
probability of cheating, he has decided to use a 
somewhat bizarre but effective strategy.  Every ten 
minutes, the students will be forced to move to a 
different desk.  Since the three desks are side-by-
side, all Mr. Nolfi has to do is work out all the 
possible arrangements of the three students.  The 
diagram to the right should help you understand 
this idea. 

Notice that if we arrange the students from left-to-right, there are three choices for the student who sits at the first desk, 
two choices for the student who sits at the second desk and one choice for the student who sits at the third desk.  
Therefore, for each student who sits at the first desk, there are two choices for the student who sits at the second desk.  
We can count the total number of seating arrangements then, simply by multiplying 3 by 2 because we have three groups 
of two arrangements when we fix the student who sits at the first desk.  This example helps us to understand the 
multiplicative counting principle.  It will also lead us to the notion of the factorial function. 

The Factorial Function 

1. The symbol n! (read “n factorial”) represents the product of all consecutive integers from 1 to n inclusive.  That is, 
 for all .  In addition, for the sake of convenience when writing formulas involving 

factorials, 0! is defined to be 1. 
n∈`! ( 1)( 2) (2)(1n n n n= − − " )

2. The factorial function can also be defined recursively as shown below. 

For all { }0n∈`∪ ,  
0,  if 0

!
( 1)!,  if 

n
n

n n n
=⎧

= ⎨ − ≥⎩ 1
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Product Rules (Multiplicative Principles) 
1. Product Rule (Multiplicative Principle) 

Let  represent a sequence of 2 tasks.  If  can be performed in m1 2,t t 1t 1 ways and for each of these,  can be performed 
in m

2t
2 ways, then the sequence of two tasks can be performed in m1m  ways altogether. 2

2. Generalized Product Rule (Generalized Multiplicative Principle) 
Let  represent a sequence of n tasks.  Suppose that task  can be performed in  ways and for each of these 
ways, task  can be performed in  ways, and for each of these ways, task  can be performed in  ways, and so 

on.  Then, the sequence of tasks can be performed in 

1 2, , , nt t t… 1t 1m

2t 2m 3t 3m

1 2
1

n

n im
i

m m m
=

=∏"

)

 ways 

altogether. 

3. Corollary of Generalized Product Rule 
If task  can be performed in 1 way and for each of these ways, task  can be performed in 2 ways, … and for each of 
these ways, task  can be performed in n ways, then the sequence of tasks can be performed in 

ways. 

1t 2t

nt
! ( 1)( 2) (2)(1n n n n= − − "

This symbol is similar to sigma 
notation except that it is used for 
products instead of sums.  The 
uppercase Greek letter pi (Π) is used to 
stand for “product” because it is the 
Greek equivalent of the Latin letter “P.” 

Example 1 
You own 3 shirts, 2 pairs of pants and 2 pairs of socks.  Assuming that you always put on your shirt first, your pants 
second and your socks third, in how many ways can you dress yourself? 
Solution 
Let  represent the three shirts, 1 2 3, ,S S S 1 2,p p  represent the pants and s  represent the socks.  Then, the set given 
below contains all the possible arrangements: 

1 2, s

{ }1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 2 2 2 3 1 1 3 1 2 3 2 1 3 2 2, , , , , , , , , , ,S p s S p s S p s S p s S p s S p s S p s S p s S p s S p s S p s S p s  

By counting the number of elements in this set, we see that there are 12 possible arrangements.  By using the generalized 
product rule, however, all we need to do is the following: 

number of ways = 3 2 2× ×  = 12 
Example 2 
A video card can display graphics in a variety of different modes including 64-bit colour at a resolution of  
1600 pixels × 1200 pixels. 
Solution 
(a) Each colour is represented as a sequence of 64 bits (“binary digits”) such as 

1101100100100100010110010010010001011001001001000100100100100101.  Using the generalized multiplicative 
principle, the number of such sequences is equal to 
     . 64 19

64 times

2 2 2 2 2 1.844674407 10× × × × = ×" ����	��


(b) One byte of memory is equal to 8 bits.  Since each colour requires 64 bits, the number of bytes required to store the 
colour code of one pixel is .  Therefore, each pixel requires 8 bytes of storage (memory).  The number of 
pixels in such an image is equal to 160 .  Therefore, the number of bytes required to store the image 

 bytes.  (By dividing this number by 10 , we obtain the number of megabytes required to 
store the image:  153 MB.) 

64 8 8÷ =
0 1200 1920000× =

21920000 8 15360000= × = 24
60000 1024 14.65÷ �2

This is a magnified section of an image on a 
computer monitor screen.  Each small 
square is called a pixel (“picture element”), 
which is the smallest addressable segment 
of the picture.  The colour of each pixel is 
determined by a binary code. 
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Homework for Sets, Additive Counting Principle, Multiplicative Counting Principle 

Sum Rules Product Rules Miscellaneous Sets and Subsets 
pp.370 - 371 
#5, 7, 8, 10, 12, 14, 15, 16 

pp.377 - 380 
#4, 6, 7, 9, 12, 13, 14, 15, 16 

pp.384 - 385 
#2, 4, 8, 9, 11, 13, 15, 16 

pp.359 - 361 
#5, 6, 8, 9, 11, 13, 14, 15 
pp.364 - 366  
#4, 5, 6, 8, 9, 12, 13, 14, 15 

Sequences and Subsets 

• Sequence 
An ordered set of quantities (called “terms”).
 

Example 1: 1, 2, 4, 8, 16, 32, 64. 
Example 2: 64, 32, 16, 8, 4, 2, 1 
 

Notice that although each sequence contains 
the same integers, the sequences are not the 
same because the integers are listed in a 
different order. 
 

For sequences, order matters! 

• Subset 
A set whose members are members of another set 
 

Example: {  is a subset of { }1,2,4,8,16,32,64,128,256}1,2, 4,8,16,32,64  
 

For sets, order does not matter!  All that matters is membership.  A 
particular value either is an element of a set or it is not an element of 
a set.  For instance, the set { }1,2,4,8,16,32,64A =  is equal to the set 

{ }64,32,16,8, 4,2,1B =  because their members are identical.  (In 
more precise terms, A B=  if and only if  and A B⊆ B A⊆ .) 

From this discussion, the following is clear: (“↔” means “is equivalent to”) 
Counting Groupings when Order Matters ↔ Counting Number of Sequences 

Counting Groupings when Order Doesn’t Matter ↔ Counting Number of Subsets 

Counting Sequences with Distinct Terms (Groupings with Distinct Objects when Order Matters) 

Example 
An anagram is a word or phrase spelled by rearranging the letters of another word or phrase (each letter can be used only 
once in the rearrangement).  How many six-letter anagrams of the word “sycophant” are there?  (For the purposes of this 
question, it does not matter whether the anagram that is formed is a valid English word.) 
Solution 
The easiest approach to solving this type of problem is once again, to draw a picture!  Imagine that you have six spaces 
available waiting to be filled with the letters found in the word “sycophant.”  Then fill the spaces by freely choosing 
letters.  There are nine choices for the leftmost letter of the word.  Once the leftmost letter is chosen, there are eight 
choices for the next letter.  Continuing in this manner, we have 7, 6, 5 and 4 choices respectively for the remaining letters.  
By applying the multiplicative counting principle, the number of anagrams must be equal to 

. 9 8 7 6 5 4 60480× × × × × =

 
Calculations like the one done above can be extremely tedious.  By observing the following, however, we can reduce 
dramatically the amount of work required: 

9 8 7 6 5 4 3 2 1 9!9 8 7 6 5 4
3 2 1 3!

× × × × × × × ×
× × × × × = =

× ×
 

Permutations 
The number of sequences of length r that can be formed using n different symbols if each symbol can be used only once is 

given by !( , ) ( 1) ( 1)
( )n r

nP n r P n n n r
n r

= = − − + =
−

"
!
.  Each sequence that is formed from the symbols is called a 

permutation of the symbols.  (Note that the symbols  and  are interchangeable.) ( , )P n r n rP

Number of 
Choices for 
1st Letter 

Number of 
Choices for 
2nd Letter 

Number of 
Choices for 
3rd Letter 

Number of 
Choices for 
4th Letter 

Number of 
Choices for 
5th Letter 

Number of 
Choices for 
6th Letter 

× × × × × 9 8 7 6 5 4 
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Counting Sequences with Unlimited Repeating Terms (Groupings with Unlimited Repeating Objects when Order Matters) 

Example 1 
Suppose that you were allowed to use each letter in a word as many times as you like when forming an anagram.  How 
many six-letter anagrams of the word “sycophant” are there if you can use each letter as many times as you like?  (For the 
purposes of this question, it does not matter whether the anagram that is formed is a valid English word.) 
Solution 
The easiest approach to solving this type of problem is once again, to draw a picture!  Imagine that you have six spaces 
available waiting to be filled with the letters found in the word “sycophant.”  Then fill the spaces by freely choosing 
letters. Since you are allowed to use each letter an unlimited number of times, there are nine choices for each space that 
needs to be filled.  By applying the multiplicative counting principle, the number of anagrams (with unlimited 
repetitions) must be equal to 

69 9 9 9 9 9 9 531441× × × × × = = . 

 

Sequences with Unlimited Repeated Terms 
The number of sequences of length r that can be formed using n different symbols if each symbol can be used as often as 
we like is . 

 factors of 

( ) ( ) r

r n

n n n n="��	�


Example 2 
Consider all 32-bit colour codes (sequences of binary digits of length 32). 

(a) How many different 32-bit codes are there altogether? 

(b) How many of the 32-bit sequences have at least one “0” bit? 

(c) How many of the codes begin with a “0” and end with a “1?” 

Solution 
(a) Let U represent the set of all 32-bit sequences.  Since there are only two different symbols (0 and 1) we can use the 

principle stated above to conclude that . 32( ) 2n U =

(b) Let A represent the set of all elements of U that have at least one “0” bit.  Then A  must represent the set of all 
elements of U that have no “0” bits!  Obviously, there is only one string of 32 bits that does not have any zeros 
(11111111111111111111111111111111).  Therefore, 

      
32

( ) ( ) ( )
2 1

n A n U n A= −

= −
 

(c) Let B represent the set of all elements of U that have at begin with a “0” bit and end with a “1” bit.  Since the first and 
last bits of each sequence are fixed,  is equal to the number of sequences that can be formed using the 30 bits 
that lie between the first and last bits.  Therefore, 
      . 

( )n B

30( ) 2n B =

Homework for Counting Sequences 
pp.400 - 401 
#5, 6, 7, 9, 11, 12, 15, 16, 18 

pp.404 - 407 
#5, 6, 7, 10, 11, 12, 13, 15, 18, 21, 24 

Number of 
Choices for 
1st Letter 

Number of 
Choices for 
2nd Letter 

Number of 
Choices for 
3rd Letter 

Number of 
Choices for 
4th Letter 

Number of 
Choices for 
5th Letter 

Number of 
Choices for 
6th Letter 

× × × × × 9 9 9 9 9 9 
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Counting Subsets (Groupings when Order doesn’t Matter) 

Back to the Lotto 6/49 Problem 
We are finally in a position to solve the Lotto 6/49 problem stated at the beginning of this unit.  Before we consider a 
solution, however, we should first rephrase the problem using the mathematically precise language of sequences and 
subsets.  Using this language, the Lotto 6/49 problem can be stated as follows: 

}{ }{1,2,3, ,47,48,49 1 49L nLet n ≤= = ∈ ≤… ` { } and ( ) 6S A L n A= ⊂ = .  What is ? ( )n S

In less precise but perhaps more intuitive language, we can see that the Lotto 6/49 problem reduces to counting the 
number of subsets of size six that can be formed using the natural number numbers from 1 to 49 inclusive. 

This problem can be solved easily if we break it up into two parts.  First we shall determine how many sequences with six 
distinct terms can be formed using the integers from 1 to 49 inclusive.  The number of sequences, however, is much 
greater than the correct answer to this problem because for sequences, order matters, while for subsets, order does not 
matter.  Therefore, the second step is to eliminate all the permutations (rearrangements) of a given group of numbers. 

1. How many sequences with six distinct terms can be formed using the integers from 1 to 49 inclusive? 
From the considerations of a previous section, the answer is obviously . (49,6)P

2. Given a set whose cardinality is six, how many permutations can be formed using all six elements of the set? 
Again from the considerations of a previous section, the answer is obviously 6!.  (For example, there are 6! ways of 
rearranging the integers 1, 2, 3, 4, 5 and 6.  However, all 6! arrangements represent the same Lotto 6/49 ticket.) 

Therefore, the number of different tickets that can be played in Lotto 6/49 is equal to 

(49,6) 49! 49! 1 49!6! 13983816
6! 43! 43! 6! 6!43!

P
= ÷ = × = =  

Combinations (Number of Subsets) 
The number of subsets S of size r (i.e. ) of a set A of size n (i.e. ( )n S r= ( )n A n= )is given by  

( , ) !( , )
! !(n r

n P n r nC n r C
r r r n r

⎛ ⎞
= = = =⎜ ⎟ −⎝ ⎠ )!

. 

Each subset of size r is called a combination of the symbols of the set A.  The symbols ,  and  are 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

n rC( , )C n r

interchangeable and are all read “n choose r.”  In mathematical literature  is used most commonly, a practice to which 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

we shall adhere in this course.  On calculators, however, you are far more likely to find the symbols  and . ( , )C n r n rC

Example 1 
How many different poker hands are possible? 
Solution 
There are 52 cards in a standard deck and 5 cards in a poker hand.  Therefore, the total number of poker hands possible is 
equal to the number of ways of choosing 5 cards from a deck of 52.  In other words, the number of hands is equal to the 
number of subsets of size 5 of a set of size 52, or “52 choose 5.” 

52 52! 52 51 50 49 48 47!
5 5!47! 5 4 3 2 1 47!

⎛ ⎞ × × × × ×
= =⎜ ⎟ × × × × ×⎝ ⎠

13 17 10 24

 

13 17 10 49 24 1 2598960
1 1 1 1 1 1
× × × × ×

= =
× × × × ×

Of course, if you have a scientific or graphing calculator, there is no need to complete the intermediate steps shown above.  
However, it is instructive to see how the recursive definition of the factorial function ( n n! ( 1)!n= − ) can be exploited to 
simplify the arithmetic involved in computing permutations and combinations. 
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Investigation 
1. Evaluate each of the following. 

9
0
⎛ ⎞
⎜ ⎟
⎝ ⎠

9
9
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

9
1
⎛ ⎞
⎜ ⎟
⎝ ⎠

9
8
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

9
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

9
7
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

9
3
⎛ ⎞
⎜ ⎟
⎝ ⎠

9
6
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

9
4
⎛ ⎞
⎜ ⎟
⎝ ⎠

9
5
⎛ ⎞
⎜ ⎟
⎝ ⎠

  

2. Now study your results carefully.  What do you notice?  Can you explain what you observe?  Can this result be 

generalized?  If so, state a conjecture that applies to  for all values of n and r. 
n
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

Example 2 
UTS (University of Toronto Schools), a private school affiliated with the University of Toronto, offers grades seven to 
twelve inclusive.  Part I of the entrance examination is written by several hundred grade six students, from which the top 
100 boys and 100 girls are chosen to write Part II.  Each year, 110 of the 200 students who write Part II of the entrance 
exam are admitted to UTS. 
(a) In how many ways can 110 candidates be chosen from the 200 students who write Part II? 
(b) UTS does not accept the top 110 students who write Part II regardless of gender.  Instead, they select the top 55 girls 

and 55 boys who write Part II.  Given this restriction, in how many ways can the 110 candidates be chosen? 

Solution 
Before you begin, you should ask yourself an important question.  Which answer should be greater, that for (a) or (b)?  
Since (b) is restricted and (a) is not, the answer to (a) should be greater. 

200 200!
110 90!100!
⎛ ⎞

=⎜ ⎟
⎝ ⎠

(a) Obviously, the number of ways in which the candidates are chosen is given by , which is too large to 

be evaluated by most scientific calculators.  However, using a graphing calculator we find that 

 58200
3.342221319 10

110
⎛ ⎞

×⎜ ⎟
⎝ ⎠

�

(b) There are  ways of choosing the boys and  ways of choosing the girls.  Using the multiplicative counting 

principle, the total number of ways is equal to .  As we predicted, the 

answer for (a) is greater than that for (b). 

100
55

⎛
⎜
⎝ ⎠

⎞
⎟

⎞
⎟

×

100
55

⎛
⎜
⎝ ⎠

2
57100 100 100

3.775914615 10
55 55 55

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
�

Homework 

pp. 413-415 #6, 7, 8, 11, 18 
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Investigation: Pascal’s Triangle 

Blaise Pascal (June 19, 1623 – August 19, 1662) was a French mathematician, physicist and 
religious philosopher.  Important contributions by Pascal to the natural sciences include the 
construction of mechanical calculators, considerations on probability theory, the study of fluids, and 
clarification of concepts such as pressure and vacuum. 

Among high school students, however, Pascal is much more famous for his triangle (shown below).  
Although the triangle can be generated very easily using simple arithmetic, it is intimately related 
both combinations and expansions of binomials.  The purpose of this investigation is to discover how Pascal’s triangle is 
related to combinations and binomial expansions. 

Activity n=0

n=1

n=2

n=3

n=4

. 

. 

. 

1. Explain how Pascal’s triangle is 
generated.  (The “little red line 
segments” are meant as a hint.) 

2. Now you will delve into the 
relationship between Pascal’s 
triangle and combinations. 
 

Complete the following table and 
then compare your results to Pascal’s 
triangle.  What do you notice?  Do 
you think that it is true in general? 

0
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

  n = 0 

1
1
⎛ ⎞

=⎜ ⎟
⎝ ⎠

1
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

    n = 1 

2
1
⎛ ⎞

=⎜ ⎟
⎝ ⎠

2
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

2
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

    n = 2 

n = 3   
3
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 
3
1
⎛ ⎞

=⎜ ⎟
⎝ ⎠

  
3
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

   
3
3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

n = 4   
4
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 
4
1
⎛ ⎞

=⎜ ⎟
⎝ ⎠

  
4
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

   
4
3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 
4
4
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 

5
3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

n = 5   
5
0
⎛ ⎞

=⎜ ⎟
⎝ ⎠

  
5
1
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 
5
2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

     
5
4
⎛ ⎞

=⎜ ⎟
⎝ ⎠

5
5
⎛ ⎞

=⎜ ⎟
⎝ ⎠
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3. Now expand and simplify each of the following binomials.  Once you are finished, compare the numerical coefficients 
of the expanded polynomials to the rows in Pascal’s triangle.  What do you notice?  State a conjecture based on your 
results. 

0( )a b+  

1( )a b+  

2( )a b+  

3( )a b+  

4( )a b+  

5( )a b+  

Conclusions 
Based on the investigation that you have just completed, state two conjectures regarding the relationship among Pascal’s 
triangle, combinations and binomial expansions. 

1.     

2.      
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THE BINOMIAL THEOREM 

The Connection among Pascal’s Triangle, Combinations and the Binomial Theorem 

If you were sufficiently observant while conducting the investigation on the previous two pages, you would have probably 
made the following conjectures: 

1. Each row (precisely, row n) of Pascal’s triangle takes the form  

0
n⎛ ⎞
⎜ ⎟
⎝ ⎠ 1

n⎛ ⎞
⎜ ⎟
⎝ ⎠ 2

n⎛ ⎞
⎜ ⎟
⎝ ⎠ 1

n
n
⎛ ⎞
⎜ ⎟−⎝ ⎠

n
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

"      

2. The numerical coefficients of the expansion of (  are equal to the numbers found in row n of Pascal’s triangle.  
For instance, .  The coefficients 1, 3, 3 and 1 can be read 
directly from row 3 of Pascal’s triangle. 
 

Therefore, it is reasonable to conjecture that  

)na b+
3 3 2 2 3 3 2 2( ) 3 3 1 3 3 1a b a a b ab b a a b ab b+ = + + + = + + +
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1 

2 

1 1 3 
6 

3 

4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

3
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 3
1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

1 4 4 1 

1 1 
1 1 

3

0 n

n
k

⎛ ⎞ ⎛ ⎞
= +

1 2 2 3 3 1

0 1 1 2 2 3 3 1 1

0

( )
1 2 3 1

0 1 2 3 1

n n n n n n n

n n n n n

n
n i i

i

n n n n
a b a a b a b a b ab b

n

n n n n n n
a b a b a b a b a b a b

n n

n
a b

i

− − − −

− − − −

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

"

"  

Now remember that at this point, we cannot yet assert that the above statements are true.  We can only claim that in the 
examples that we have investigated, the above statements hold true.  A little more consideration is required to elevate the 
above statements to the status of “true.” 

Pascal’s Identity 
If you recall how Pascal’s triangle is formed, and accept that statement 1 

above is true, then you must also accept that 
⎛ ⎞1

1
n n

k k
+

⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

n
k
⎞
⎟
⎠

⎛ ⎞ ⎛ ⎞
= +

. 

In fact, statement 1 is true if and only if . 
1

1
n n

k k
+⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

To understand why this should be the case, examine the diagram at the right.  
Any value in row n+1 is obtained by adding the two values directly “above” 

it in row n.  For example, we know that  is the “middle” value in 

row 4 of Pascal’s triangle.  We also know that this value is obtained by 

adding the “3’s” directly above it.  Stated more precisely, we see that 
⎛ ⎞

4
6

2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

4 3 3
2 1 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
⎝ ⎠

 since 
⎛ ⎞
⎜ ⎟  and 
3

3
1

3
3

2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

.  Since 

we can perform exactly the same steps anywhere in Pascal’s triangle, it seems very reasonable to expect that 

. 
1

1
n n

k k
+⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

n
k
⎞
⎟
⎠



Theorem: Pascal’s Identity 

For all  and  such that 1 ,  n W∈ k∈` k n≤ ≤
1

1
n n

k k
+⎛ ⎞ ⎛ ⎞ ⎛

= +⎜ ⎟ ⎜ ⎟ ⎜−⎝ ⎠ ⎝ ⎠ ⎝

n
k
⎞
⎟
⎠

Proof: 
! !

1 ( 1)!( 1)! !( )!
! !

( 1)!( 1)! ! ( )!
! ( 1) !

!( )!
!( ( 1))

!( 1)!
!( 1)

!( 1 )!
( 1)!

!( 1 )

( 1)
1)

1

(

!

n n n n
k k k n k k n k

n n
k n k k n k

kn n k n
k n k

n k n k
k n k
n n

k n k
n

k n k

k

n k
k n

n

k
k

⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟− − − + −⎝ ⎠ ⎝ ⎠

= +
− − + −
+ − +

=
−

+ − +
=

− +
+

=
+ −
+

=
+ −

+⎛ ⎞
=

− +
−

⎜
⎝

+

⎟
⎠

 

Corollary of Pascal’s Identity 

For all , the entries in row n of Pascal’s triangle are ⎜ , , ⎜ , …, ⎜ ⎟n W∈
0
n⎛ ⎞
⎟

⎝ ⎠
⎟

⎝ ⎠1
n⎛ ⎞
⎜ ⎟
⎝ ⎠ 2

n⎛ ⎞
1

n
n
⎛ ⎞

−⎝ ⎠
, . 

n
n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
A Simple Consequence of Pascal’s Triangle 

n n
k n k
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (This is easy to see because of the symmetry of Pascal’s triangle.) 

Proof: 
!

!( )!
!

( )! !
!

( )!( ( ))

n n
k k n k

n
n k k

n
n k n n k

n
n k

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

=
−

=
− − −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

!
1 4 4 1 

1 1 
1 1 

1 

2 

1 1 3 
6 

3  

Notice the symmetry 
of Pascal’s triangle 
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Finally, we can state the binomial theorem: 

The Binomial Theorem 

For all , . 1 2 2 3 3 1

0

( )
1 2 3 1

n
n n n n n n n n i

i

n n n n n
a b a a b a b a b ab b a b

n i
− − − −

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑" i−n W∈

We are not yet in a position to prove the binomial theorem.  However, since we have provided a strong inductive 
argument in favour of it, we shall accept the theorem for the time being and focus on some simple applications. 

Examples 
5

5 5

0

5 4 1 3 2 2 3 4

5
( )

5 10 10 5

k k

k
x y x y

k

7
7 7

0

7
7

0

7 6 5 4 3 2

7
( 1) 1

7

7 21 35 35 21 7

k k

k

k

k

x x
k

x
k

5x x y x y x y xy y

−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
= + + + + +

∑

1x x x x x x x

−

=

−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

= + + + + + + +

∑

∑

 

 

4
2 4 4 2

0

4
4 4 2

0

4 0 4 0 3 1 3 2 2 2 2 4 1 3 1 6 0 4 0 8

4 3 2 2 4 6

4
(2 3 ) (2 ) (3 )

4
2 3

4 4 4 4 4
2 3 2 3 2 3 2 3 2 3

0 1 2 3 4

1(16)(1) 4(8)(3) 6(4)(9) 4(2)(27) 1(1)

k k

k

k k k k

k

m n m n
k

m n
k

m n m n m n m n m n

m m n m n mn

−

=

− −

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + + +

∑

∑

8

4 3 2 2 4 6 8

(81)
16 96 216 216 81

n
m m n m n mn n= + + + +

 

What is the fifteenth term in the expansion of ? 2 3 2(4 )a b+ 0

k

20
2 3 20 2 20 3

0

20
20 40 2 3

0

20
(4 ) (4 ) ( )

20
4

k k

k

k k

k

a b a b
k

a b
k

−

=

− −

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑

∑
 

For the fifteenth term, k = 14 (for the first term, k = 0, for the second term, k = 1, etc.).  Therefore, the fifteenth term is  

20 14 40 28 42 6 12 42 12 4220 20!4 4 158760960
14 14!6!

a b a b a b− −⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 

 
Homework 

pp. 469-473 #1ef, 4a, 8, 9, 15, 29 
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PROOF BY MATHEMATICAL INDUCTION 
Introduction 
Proof by mathematical induction is a specialized technique of proof that applies specifically to mathematical statements 
involving the natural numbers.  Since there is a direct association between sequences and , we can equivalently describe 
mathematical induction as a method of proving sequences of mathematical statements. 

`

Analogy: The Domino Effect 
Mathematical induction works because of exactly the same principle that governs the domino effect.  Imagine an infinite 
sequence of dominoes arranged in such a manner that if a particular domino is toppled, then the one immediately 
following it will also fall over.  In such an arrangement, if the first domino in the sequence is toppled, a “chain reaction” is 
triggered, causing all subsequent dominoes eventually to be knocked down.  Consider the following side view of an 
infinite sequence of dominoes: 

… …
n: 1 2 3 4 5 6 7 8 9 10 11 k+1 k 

 
Let  represent the nth domino in this infinite sequence of dominoes.  Then, it is clear that the following properties hold: nD
1.  is capable of being toppled. 1D
2. For all , if  is toppled, then  will be toppled (i.e. nD 1nD + 1n nD D +→n∈` ). 

 

The Principle of Mathematical Induction 

Let  represent an infinite sequence of mathematical statements.  In addition, suppose that 
BOTH of the following conditions hold. 

1 2 3 1, , , , , ,k kP P P P P +… …

1. Statement  is true.  (This is known as the BASE CASE or BASAL CASE.  Think of it as the foundational case.)  
AND 

1P

2. For all , if  is true, then  is true.  (i.e. k∈` kP 1kP + 1k kP P +→ ) 

Then  must be true for all . nP n∈`

Examining only a few terms of a sequence of statements will help us to accept this principle.  If property 1 holds, then we 
know that  must be true.  If we know  to be true, however, we can apply property 2 to prove that  must be true.  
Now that we know that  is true, we can apply property 2 again to prove that  must be true.  This “chain reaction,” 
just as with the domino effect, continues ad infinitum.  This in turn allows us to conclude that every statement in the 
sequence must be true. 

1P 1P 2P

2P 3P

Example 

Prove that  
0

2
n

n

k

n
k=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑

Analysis 
Before we blindly forge ahead on an inductive excursion, let us take some time to interpret the given statement.  The left 
side of the equation represents the sum 

  

= (# ways of choosing subsets of size 0) + (# ways of choosing subsets of size 1) + (# ways of choosing subsets of size 2) 
          + "  + (# ways of choosing subsets of size n) 

0 1 2
n n n n

n
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

"

= (total # of subsets of a set containing n elements) 
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The right side of the equation represents the number of sequences of length n that can be formed using two different 
symbols if each symbol can be used an unlimited number of times.  Specifically,  is equal to the number of different 
binary sequences of length n.  We can use the binary sequences of length n to describe all the subsets of a set containing n 
elements in the following way.  (For the sake of simplicity, the case n = 4 is used to illustrate the general case.) 

2n

}{ 1 2 3 4, , ,S x x x x=Let  represent any set containing 4 elements.  In addition, let the binary digit “0” mean “is not an 
element of S” and let “1” mean “is an element of S.”  Then the binary sequence 1010, for instance, represents the subset 

}{ 1 3,A x x= 1x S∈ 3x S∈ because the first “1” means that  while the second “1” means that .  Similarly, the zeros mean 

respectively that 2x S∉ 4x S∉ and . 

In this way, we can see that the number of binary sequences of length n must also equal the number of subsets of a set 

containing n elements.  This gives us a great deal of confidence that the statement  must be true.  To settle the 

question once and for all, we can write a formal proof by mathematical induction as shown below. 
0

2
n

n

k

n
k=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑

Proof 

Let  represent the statement . 
0

2
n

n

i

n
i=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑nP

1. Base Case 
First we must show that  is true (in this case the induction begins at n = 0). 0P

0

0

0
L.H.S.

0
0

1

i i=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

∑ 0R.H.S. 2
1
=
=

and  

 
 

Since L.H.S. = R.H.S. , the base case must be true.  Therefore,  must be true. 0P
2. Inductive Case 

Suppose that the statement  is true for n = k (i.e. suppose that  is true). 

Then, .  (This is called the induction hypothesis.)  Now consider 

nP kP

0
2

k
k

i

k
i=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑

1

0

1k

i

k
i

+

=

+⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . 

 

The statement 1kP +  
corresponds to 

1
1

0

1
2

k
k

i

k
i

+
+

=

+⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ .  We 

need to show that this 
is true if kP  is true. 

1

0 1

1

1 1

1 1

1

1 1 1 1
10

1 1
1

1
1

1

0

k k

i i

k

i

k k

i i

k k

i i

k

i

k k k k
i i k

k k
i i

k k
i i

k k
i i

k k
i

+

= =

=

= =

= =

=

+ + + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡⎛ ⎞ ⎛

= + +⎢ ⎥ ⎢⎜ ⎟ ⎜ −⎝ ⎠ ⎝⎣ ⎦ ⎣
⎡ ⎤⎛ ⎞ ⎛ ⎞

= +⎢⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑

∑

∑ ∑

∑ ∑

∑
1

0

0 0

1

2 2
2(2 )
2

k

i

k k

i i

k k

k

k

k k
i k

k k
i i

−

=

= =

+

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ +⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

=

=

∑

∑ ∑

Here we are “splitting off” the first and last terms of the sum.  

Here we are applying Pascal’s identity. 

1

1 1
⎤⎞

+ ⎥⎟
⎠ ⎦

Here we are applying the rule ( )i i i ia b a b+ = +∑ ∑ ∑ , which is 
simply a more compact form of 

1 1 2 2 1 2 1 2( ) ( ) ( ) ( ) ( )n n n na b a b a b a a a b b b+ + + + + + = + + + + + + +" " "

Therefore, we have shown that  is true and that if  is true, then 1P kP 1kP +  
must also be true.  By the principle of mathematical induction, this implies 
that  must be true for all nP n∈` . 
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Proof of the Binomial Theorem 

Let  represent the statement . 
0

( )
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n n

i

n
a b a b

i
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⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑ i i

k
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i

k
a b a b

i
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=
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⎝ ⎠
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nP

1. Base Case 
First we must show that  is true (in this case the induction begins at n = 0). 0P

0
0 0

0

0 0

0
L.H.S.

0
0

1

i

i
a b

i

a b

−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞
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⎝ ⎠

=

∑ 0R.H.S. ( )
1

a b= +
=

and  

 
 

Since L.H.S. = R.H.S. , the base case must be true.  Therefore,  must be true. 0P
2. Inductive Case 

Suppose that the statement  is true for n = k (i.e. suppose that  is true). 

Then, ( ) .  (This is called the induction hypothesis.)  Now consider . 

We need to show that this expression is equal to 

nP kP
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=
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+
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= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞
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⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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⎝ ⎠

∑

∑

∑
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−
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+ +⎜ ⎟

⎝ ⎠
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= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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1 0

1
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1

( )a b+

. 
Therefore, we have shown that  is true, and that if  is true, then  must also be true.  
By the principle of mathematical induction, this implies that  must be true for all 

1P kP 1kP +

nP n∈` . 

Homework 

pp. 461-463 #2, 3, 5, 8, 11, 14, 15, 16, 17, 19 

Here we are applying Pascal’s identity again. 

Here we are “splitting off” the first and last terms of the sum.  

Here we are again applying the rule ( )i i i ia b a b+ = +∑ ∑ ∑ . 

Here we write 1k ia + −  as ( )k ia a . −

Here we write  as b b . 1ib + ( )i

Here we write 1kb +  as ( )kb b . 

In a few places in this argument, we apply the rule , which 
is a more compact form of 

ica c a=∑ ∑ i

1 2 1 2( )n nca ca ca c a a a+ + + = + + +" "  
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